CHAPTER 1 . APPLICATIONS OF MATRICES AND DETERMINANTS

1. Adjoint of a matrix A is $\text{Adj}A = A^T$.
 (where A_c is a cofactor matrix)

2. Inverse of a matrix A is $A^{-1} = \frac{1}{|A|}(\text{Adj}A)$.

3. Results:
 (i) $A(\text{Adj}A) = (\text{Adj}A)A = |A|I$.
 (ii) $\text{Adj}(AB) = (\text{Adj}B)(\text{Adj}A)$.
 (iii) $(AB)^{-1} = B^{-1}A^{-1}$.
 (iv) $AA^{-1} = A^{-1}A = I$.
 (v) $(A^{-1})^{-1} = A$.

4. The rank of a zero matrix (irrespective of its order) is 0.

5. Conditions for consistency of Simultaneous Linear Equations (Non – homogeneous):
 (i) If $\rho(A, B) = \rho(A) = n$, then the equations are consistent and has unique solution.
 (ii) If $\rho(A, B) = \rho(A) < n$, then the equations are consistent and has infinitely many solutions.
 (iii) If $\rho(A, B) \neq \rho(A)$, then the equations are inconsistent and has no solution.

6. Conditions for consistency of Simultaneous Linear Equations (Homogeneous):
 (i) If $\rho(A, B) = \rho(A) = n$, (OR) If $|A| \neq 0$ then the equations have trivial solutions only.
 (ii) If $\rho(A, B) = \rho(A) < n$, (OR) If $|A| = 0$ then the equations have non trivial solutions also.

7. Cramer’s rule: $x = \frac{\Delta_x}{\Delta}; \quad y = \frac{\Delta_y}{\Delta}; \quad z = \frac{\Delta_z}{\Delta}$.

8. Technology matrix $B = \begin{bmatrix} a_{11} & a_{12} \\ x_1 & x_2 \\ a_{21} & a_{22} \\ x_1 & x_2 \end{bmatrix}$.

9. Output matrix $X = (I - B)^{-1}D$.

10. Transition Probability Matrix $T = \begin{bmatrix} P_{AA} & P_{AB} \\ P_{RA} & P_{BB} \end{bmatrix}$ (OR) $T = \begin{bmatrix} P_{PP} & P_{PQ} \\ P_{QP} & P_{QQ} \end{bmatrix}$
 (depends on the name of the products A, B or P, Q)

11. For finding Equilibrium share of market $A + B = 1$ (OR) $P + Q = 1$
 (This step carries 1 mark and it is compulsory)
CHAPTER 2 . ANALYTICAL GEOMETRY

1. \(\frac{SP}{PM} = e \).

2. Eccentricity of parabola \(e = 1 \).

3. Eccentricity of ellipse \(e < 1 \).

4. Eccentricity of hyperbola \(e > 1 \).

5. Eccentricity of rectangular hyperbola \(e = \sqrt{2} .. \)

6. Parabola:

<table>
<thead>
<tr>
<th></th>
<th>(y^2 = 4ax) (opens rightward)</th>
<th>(y^2 = -4ax) (opens leftward)</th>
<th>(x^2 = 4ay) (opens upward)</th>
<th>(x^2 = -4ay) (opens downward)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>Focus</td>
<td>((a,0))</td>
<td>((-a,0))</td>
<td>((0,a))</td>
<td>((0,-a))</td>
</tr>
<tr>
<td>Directrix</td>
<td>(x = -a)</td>
<td>(x = a)</td>
<td>(y = -a)</td>
<td>(y = a)</td>
</tr>
<tr>
<td>Latusrectum</td>
<td>(4a)</td>
<td>(4a)</td>
<td>(4a)</td>
<td>(4a)</td>
</tr>
<tr>
<td>Axis</td>
<td>(y = 0)</td>
<td>(y = 0)</td>
<td>(x = 0)</td>
<td>(x = 0)</td>
</tr>
</tbody>
</table>

7. Ellipse:

<table>
<thead>
<tr>
<th>(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1), (a > b)</th>
<th>(\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1), (a > b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre</td>
<td>(0,0)</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>(b^2 = a^2(1-e^2)) (OR)</td>
</tr>
<tr>
<td>(e = \sqrt{1 - \frac{b^2}{a^2}})</td>
<td>(e = \sqrt{1 - \frac{b^2}{a^2}})</td>
</tr>
<tr>
<td>Vertices</td>
<td>((a,0),(-a,0))</td>
</tr>
<tr>
<td>Directrix</td>
<td>(x = \pm \frac{a}{e})</td>
</tr>
<tr>
<td>Latusrectum</td>
<td>(\frac{2b^2}{a})</td>
</tr>
<tr>
<td>Foci</td>
<td>((ae,0),(-ae,0))</td>
</tr>
</tbody>
</table>

8. **Hyperbola:**

<table>
<thead>
<tr>
<th></th>
<th>(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1)</th>
<th>(\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centre</td>
<td>(0,0)</td>
<td>(0,0)</td>
</tr>
<tr>
<td>Eccentricity</td>
<td>(b^2 = a^2(e^2 - 1)) (OR) (b^2 = a^2(e^2 - 1))</td>
<td>(e = \sqrt{1 + \frac{b^2}{a^2}}) (OR) (e = \sqrt{1 + \frac{b^2}{a^2}})</td>
</tr>
<tr>
<td>Vertices</td>
<td>((a,0),(-a,0))</td>
<td>((0,a),(0,-a))</td>
</tr>
<tr>
<td>Directrix</td>
<td>(x = \pm \frac{a}{e})</td>
<td>(y = \pm \frac{a}{e})</td>
</tr>
<tr>
<td>Latusrectum</td>
<td>(\frac{2b^2}{a})</td>
<td>(\frac{2b^2}{a})</td>
</tr>
<tr>
<td>Foci</td>
<td>((ae,0),(-ae,0))</td>
<td>((0,ae),(0,-ae))</td>
</tr>
</tbody>
</table>

9. The general equation of Rectangular Hyperbola (R.H) is \(xy = c^2 \).

\[
\left(\text{where } c^2 = \frac{a^2}{2} \right)
\]

(useful for objectives)

10. The eccentricity of Rectangular Hyperbola (R.H) is \(e = \sqrt{2} \)
CHAPTER 3. APPLICATIONS OF DIFFERENTIATION – I

1. Average cost \((AC) = \frac{C}{x} \left(or \frac{f(x) + k}{x} \right) \).

2. Average variable cost \((AVC) = \frac{f(x)}{x} \).

3. Average fixed cost \((AFC) = \frac{k}{x} \).

4. Marginal cost \((MC) = \frac{dC}{dx} \).

5. Marginal average cost \((MAC) = \frac{d(AC)}{dx} \).

6. Total revenue \(R = px \).

7. Average revenue \((AR) = \frac{R}{x} \).

 (Average revenue = Demand function i.e, \(AR = p \))

8. Marginal average revenue \((MR) = \frac{dR}{dx} \).

9. If \(x = f(p) \) is a demand function, then Elasticity of demand \(\eta_d = -\frac{p}{x} \cdot \frac{dx}{dp} \).

 (Where \(x \) – quantity demanded ; \(p \) – price)

 Note: For a demand function \(q = f(p) \), \(\eta_d = \frac{p}{q} \cdot \frac{dq}{dp} \)

10. If \(x = f(p) \) is a supply function, then Elasticity of supply \(\eta_s = \frac{p}{x} \cdot \frac{dx}{dp} \).

 (Where \(x \) – quantity supplied ; \(p \) – price)

11. Relation between \(MR \) and Elasticity of demand is \(MR = p \left(1 - \frac{1}{\eta_d} \right) \).

12. At equilibrium level, \(Q_d = Q_s \).

13. Equation of tangent is \((y - y_1) = m(x - x_1) \)

14. Equation of normal is \((y - y_1) = -\frac{1}{m}(x - x_1) \)

CHAPTER 4 . APPLICATIONS OF DIFFERENTIATION – II

1. **Euler’s theorem**: If \(u \) is a homogeneous function of \(x \) and \(y \) with degree \(n \) then, \(x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu. \)

 (\(f \) or \(z \) can be used in the place of \(u \) depends on the name of the function)

2. Partial Elasticities
 \[
 \frac{Ep_1}{Ep} = -\frac{p_1}{q_1} \frac{\partial q_1}{\partial p_1} \quad \text{and} \quad \frac{Ep_2}{Ep} = -\frac{p_2}{q_1} \frac{\partial q_1}{\partial p_2}
 \]

3. Economic order quantity \((q_0) = \sqrt{\frac{2RC_3}{C_1}}.\)
 (where \(R \) – Requirement ; \(C_3 \) – ordering cost ; \(C_1 \) – carrying cost)

4. If unit price and percentage of inventory are given then carrying cost \((C_1) = \frac{\%}{100} \times \text{unitprice}.\)

5. Time between two consecutive orders \((t_0) = \frac{q_0}{R}.\)

6. Number of orders = \(\frac{R}{q_0}.\)

7. Minimum average variable cost = \(\sqrt{2RC_3C_1}.\)

8. Total ordering cost = \(\frac{R}{q_0} \times C_3.\)

9. Total carrying cost = \(\frac{q_0}{2} \times C_1.\)

CHAPTER 5. APPLICATIONS OF INTEGRAL CALCULUS

Properties of Definite integrals:

1. \[\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx. \]

2. If \(f(x) \) is an odd function, i.e, if \(f(-x) = -f(x) \) then \[\int_{-a}^{a} f(x)dx = 0. \]

3. If \(f(x) \) is an even function, i.e, if \(f(-x) = f(x) \) then \[\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx. \]

4. \[\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx. \]

5. \[\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx. \]

6. The area under the curve \(y = f(x) \), the x-axis and the ordinates at \(x = a \) and \(x = b \) is \[Area = \int_{a}^{b} ydx. \]

7. The area under the curve \(x = g(y) \), the y-axis and the lines \(y = c \) and \(y = d \) is \[Area = \int_{c}^{d} xdy. \]

8. If \(MC \) is the marginal cost function then total cost function is given by \[C = \int (MC)dx + k. \]

9. If \(MR \) is the marginal revenue function then total revenue function is given by \[R = \int (MR)dx + k. \]

10. The producers’ surplus for the supply function \(p = g(x) \) for the quantity \(x_0 \) and price \(p_0 \) is \[P.S = p_0x_0 - \int_{0}^{x_0} g(x)dx. \]

11. The consumers’ surplus for the demand function \(p = f(x) \) for the quantity \(x_0 \) and price \(p_0 \) is \[C.S = \int_{0}^{x_0} f(x)dx - p_0x_0. \]
CHAPTER 6. DIFFERENTIAL EQUATIONS

1. The General form of Homogeneous differential equations is \(\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}. \)

2. Working rule for finding the solution of linear differential equations

 (i) Extract P and Q.

 (ii) Find \(\int P \, dx. \)

 (iii) Find Integrating Factor (I.F) = \(e^{\int P \, dx}. \)

3. The solution to linear differential equations of type \(\frac{dy}{dx} + P(x) = Q(x) \) (Where \(P \) and \(Q \) are functions of \(x \) only) is \(y(I.F) = \int Q(I.F) \, dx + C \) (OR) \(ye^{\int P \, dx} = \int Qe^{\int P \, dx} \, dx + C \)

4. The solution to linear differential equations of type \(\frac{dx}{dy} + P(y) = Q(y) \) (Where \(P \) and \(Q \) are functions of \(y \) only) is \(x(I.F) = \int Q(I.F) \, dy + C \) (OR) \(xe^{\int P \, dy} = \int Qe^{\int P \, dy} \, dy + C. \)

5. Second order linear differential Equations

 If \(m_1 \) and \(m_2 \) are the roots of the Auxilliary equation is of the type \(ax^2 + bx + c = 0 \) (Quadratic equation)

 (i) If the roots \(m_1 \) and \(m_2 \) are real and distinct, C.F = \(Ae^{m_1x} + Be^{m_2x}. \)

 (ii) If the roots \(m_1 \) and \(m_2 \) are real and equal\((m_1 = m_2)\), C.F = \((Ax + B)e^{mx}. \)

 (iii) If the roots \(m_1 \) and \(m_2 \) are unreal, i.e, if \(m = \alpha \pm i\beta \), C.F = \(e^{\alpha x}(A\cos \beta x + B\sin \beta x). \)

 (C.F – Complementary Function)
CHAPTER 7. INTERPOLATION

1. Forward operator (delta) \(\Delta(y_0) = y_1 - y_0 \) (or) \(\Delta(f(x)) = f(x + h) - f(x) \).

2. Backward operator (nabla) \(\nabla(y_1) = y_1 - y_0 \) (or) \(\nabla(f(x + h)) = f(x + h) - f(x) \).

3. The Shifting operator \(E(y_0) = y_1, \ E^2(y_0) = y_2, \ E^3(y_0) = y_3 \ldots \) and so on.

4. The relation between forward operator (delta) and shifting operator \(E \) is

\[
\Delta = E - 1 \quad \text{(or)} \quad E = \Delta + 1.
\]

5. (For missing term problems)
 (a) \((E - 1)^3 y_0 = (E^3 - 3E^2 + 3E - 1)y_0 \).
 (b) \((E - 1)^4 y_0 = (E^4 - 4E^3 + 6E^2 - 4E + 1)y_0 \).
 (c) \((E - 1)^5 y_0 = (E^5 - 5E^4 + 10E^3 - 10E^2 + 5E - 1)y_0 \).

6. Gregory – Newton’s forward formula:

\[
y = y_0 + \frac{u}{1!} \Delta y_0 + \frac{u(u - 1)}{2!} \Delta^2 y_0 + \frac{u(u - 1)(u - 2)}{3!} \Delta^3 y_0 + \ldots + \frac{u(u - 1)(u - 2)\ldots(u - n + 1)}{n!} \Delta^n y_0.
\]

Where \(u = \frac{x - x_0}{h} \). and \(h \) – equal interval between the \(x \)-values

(number of terms in the formula depends on the number of terms in the problem)

7. Gregory – Newton’s backward formula:

\[
y = y_n + \frac{u}{1!} \nabla y_n + \frac{u(u + 1)}{2!} \nabla^2 y_n + \frac{u(u + 1)(u + 2)}{3!} \nabla^3 y_n + \ldots + \frac{u(u + 1)(u + 2)\ldots(u + n - 1)}{n!} \nabla^n y_n.
\]

Where \(u = \frac{x - x_n}{h} \). and \(h \) – equal interval between the \(x \)-values

(number of terms in the formula depends on the number of terms in the problem)

8. Lagrange’s formula:

\[
y = y_0 \frac{(x - x_1)(x - x_2)\ldots(x - x_n)}{(x_0 - x_1)(x_0 - x_2)\ldots(x_0 - x_n)} + y_1 \frac{(x - x_0)(x - x_2)\ldots(x - x_n)}{(x_1 - x_0)(x_1 - x_2)\ldots(x_1 - x_n)} + \ldots + y_n \frac{(x - x_0)(x - x_1)\ldots(x - x_{n-1})}{(x_n - x_0)(x_n - x_1)\ldots(x_n - x_{n-1})}
\]

(depending on the number of terms given in the problem)

9. **Line Of Best Fit:**

Normal equations are

\[a \sum x + nb = \sum y \]
\[a \sum x^2 + b \sum x = \sum xy \]

The line of best fit is

\[y = ax + b \]

CHAPTER 8 . PROBABILITY DISTRIBUTION

1. If \(X \) is a continuous random variable, then \(P(a < X < b) = \int_a^b f(x)dx \).

2. For a discrete random variable \(X \),

 Mean \(E(X) = \sum x_i p_i \).

 \(E(X^2) = \sum x_i^2 p_i \).

 \(Var(X) = E(X^2) - [E(X)]^2 \).

3. For a continuous random variable \(X \),

 Mean \(E(X) = \int_{-\infty}^\infty x f(x)dx \).

 \(E(X^2) = \int_{-\infty}^\infty x^2 f(x)dx \).

 \(Var(X) = E(X^2) - [E(X)]^2 \).

4. If the discrete random variable \(X \) follows Binomial distribution then

 \(P(X = x) = \binom{n}{x} p^x q^{n-x}, \quad x = 0,1,2, \ldots, n \).

5. Results related to Binomial distribution:

 Mean = \(np \); Variance = \(npq \); and \(p + q = 1 \).

6. If the discrete random variable \(X \) follows Poisson distribution then

 \(P(X = x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!}, \quad x = 0,1,2, \ldots \).

7. Results related to Poisson distribution:

 Mean \(\lambda = np \); Variance = \(\lambda \).

In Poisson distribution \textbf{Mean = Variance}
8. If the continuous random X follows Normal distribution, then its p.d.f is given by
\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad -\infty < x < \infty. \]

9. To convert Normal variate X to standard Normal variate z we use, $z = \frac{X - \mu}{\sigma}$.

CHAPTER 9 . SAMPLING DISTRIBUTION

1. **Notations:**
 (a) N – Population size
 (b) n – Sample size
 (c) \overline{X} – Mean of the sample
 (d) μ – Mean of the population
 (e) s - Standard deviation (S.D) of sample
 (f) σ - Standard deviation (S.D) of population

2. Confidence limits for $\mu = \overline{X} \pm (Z_c)\frac{s}{\sqrt{n}}$. (If N is not given)
 \[= \overline{X} \pm (Z_c)\frac{s}{\sqrt{n}} \sqrt{\frac{N-n}{N-1}}. \text{ (If } N \text{ is given)} \]

3. Confidence intervals for proportion $p = \overline{X} \pm (Z_c)\sqrt{\frac{pq}{n}}$. (If N is not given)
 \[= \overline{X} \pm (Z_c)\sqrt{\frac{pq}{n}} \sqrt{\frac{N-n}{N-1}}. \text{ (If } N \text{ is given)} \]
 Note: For 95% confidence interval $Z_c = 1.96$

 For 99% confidence interval $Z_c = 2.58$

4. **Testing of Hypothesis Formulae:**
 Test statistic $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$.
 Test statistic $Z = \frac{p - P}{\sqrt{\frac{pq}{n}}}$.

K. MANIMARAN. M.Sc.,B.Ed ; P.G. Asst - GOLDEN GATES MAT. HR. SEC. SCHOOL, SALEM – 8. PH : 94899 69230.
5. For 5% level of significance: Acceptance region $|Z| < 1.96$.

Critical region $|Z| \geq 1.96$.

6. For 1% level of significance: Acceptance region $|Z| < 2.58$.

Critical region $|Z| \geq 2.58$.

CHAPTER 10. APPLIED STATISTICS

1. Correlation coefficient formulae:

(a) $r(X, Y) = \frac{N \sum XY - \sum X \sum Y}{\sqrt{N \sum X^2 - (\sum X)^2} \sqrt{N \sum Y^2 - (\sum Y)^2}}$

(If \bar{X}, \bar{Y} are integers or non-integers)

(b) $r(x, y) = \frac{\sum xy}{\sqrt{\sum x^2 \sum y^2}}$ Where $x = X - \bar{X}$ and $y = Y - \bar{Y}$.

(If \bar{X}, \bar{Y} are integers) and $\bar{X} = \frac{\sum X}{n}$ and $\bar{Y} = \frac{\sum Y}{n}$

(c) $r(X, Y) = \frac{N \sum dx dy - \sum dx \sum dy}{\sqrt{N \sum dx^2 - (\sum dx)^2} \sqrt{N \sum dy^2 - (\sum dy)^2}}$

(If \bar{X}, \bar{Y} are integers or non-integer)

Where $dx = X - A$ and $dy = Y - B$. (A, B are arbitrary values of X and Y)

(Note: Correlation coefficient should lie between -1 and 1)

2. Regression Formulae:

(a) Regression line of X on Y is

$(X - \bar{X}) = b_{xy} (Y - \bar{Y})$.

(b) Regression line of Y on X is

$(Y - \bar{Y}) = b_{yx} (X - \bar{X})$. Where $\bar{X} = \frac{\sum X}{n}$ and $\bar{Y} = \frac{\sum Y}{n}$

Where $b_{xy} = \frac{N \sum XY - \sum X \sum Y}{\sum Y^2 - (\sum Y)^2}$ and $b_{yx} = \frac{N \sum XY - \sum X \sum Y}{\sum X^2 - (\sum X)^2}$

(If \bar{X}, \bar{Y} are integers or non-integers)

Where $b_{xy} = \frac{\sum xy}{\sum y^2}$ and $b_{yx} = \frac{\sum xy}{\sum x^2}$ (If \bar{X}, \bar{Y} are integers)

(Note: Regression lines will intersect at \((X, Y)\)).

3. Seasonal Index = \(\frac{\text{Quarterly average}}{\text{Grand average}} \times 100\).

4. Index Numbers:

 (a) Laspeyre’s price Index number \(\left(P_{01}^L \right) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100\).

 (b) Paasche’s price index number \(\left(P_{01}^P \right) = \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100\).

 (c) Fisher’s price index number \(\left(P_{01}^F \right) = \sqrt{\frac{\sum p_1 q_0 \sum p_1 q_1}{\sum p_0 q_0 \sum p_0 q_1}} \times 100\).

 (OR) \(\left(P_{01}^F \right) = \sqrt{P_{01}^L \times P_{01}^P}\).

 (d) Cost of Living Index numbers:

 (i) Aggregate Expenditure method \((C.L.I) = \frac{\sum p_1 q_0}{\sum p_0 q_0} \times 100\).

 (ii) Family Budget method \((C.L.I) = \frac{\sum PV}{\sum V}\).

 Where \(P = \frac{p_1}{p_0} \times 100\) and \(V = p_0 q_0\).

5. Statistical Quality Control (SQC) Formulae:

 Range chart \((R\text{ Chart})\):

 \[C.L. = \bar{R} = \frac{\sum R}{n} \]

 \[U.C.L. = D_4 \bar{R} \]

 \[L.C.L. = D_3 \bar{R} \]

 \(\bar{X}\text{ Chart}:

 \[C.L. = \bar{X} = \frac{\sum X}{n} \]

 \[U.C.L. = \bar{X} + A_2 \bar{R} \]

 \[L.C.L. = \bar{X} - A_2 \bar{R} \]

 (Where \(C.L.\) – Central Line ; \(U.C.L\) - Upper Control Line ; \(L.C.L\) - Lower Control Line)