PRESENTED BY

B. ELANGOVAN. M.SC., M.ED., M.PHIL.,
(Dr. Radhakrishnan State level Best Teacher Award - 2011 recipient)
P.G.TEACHER (PHYSICS),
PACHAIYAPPA’S HR.SEC.SCHOOL,
KANCHEEPURAM-631501.

BEST WISHES
+2 Physics – 460 one mark Questions in the second volume

+ 2 Physics * UNIT – 6 ATOMIC PHYSICS *

1. At atmospheric pressure, air and other gases are of electricity.
2. Electric current may be passed through a gas by allowing to pass through them.
3. Electrons were discovered by
4. is an arrangement to study the conduction of electricity through gases.
5. In a discharge tube, the potential difference applied between the two electrodes is
6. In a discharge tube, the discharge of electricity through gases starts at a pressure of about
7. In a discharge tube, the positive column is produced at a pressure of about
8. In a discharge tube, Crooke’s dark space is produced at a pressure of about
9. Cathode rays travel with a velocity up to of the velocity of light.
10. Canal rays were discovered by in the year 1886.
11. If V is the potential difference between the two plates and d is the distance between them, then E =
12. e / m value of the electron is
13. Millikan’s experiment is used for the measurement of charge of an
14. In Millikan’s experiment, the potential difference applied between the two electrodes is
15. The net downward force acting on the oil drop =
16. The radius of the first orbit of the electron is proportional to the square of the
17. Bohr radius value r_1 =
18. The value of ionization potential energy for hydrogen atom is
19. The fine structure of spectral lines can not be explained by
20. According to Sommerfeld’s atom model, for any principal quantum number n, there are n possible sub-shells, out of which one is circular and the remaining (n-1) are in shape.
21. X-rays were discovered by
UNIT – 6 ATOMIC PHYSICS

46. X-rays are electromagnetic waves of short wavelength in the range of
47. Roentgen was awarded Nobel prize in 1901 for the discovery of
48. When fast moving electrons are suddenly stopped by a metallic target, are produced.
49. In Coolidge tube, a high potential of about is applied between filament F and the target T.
50. X-rays are of two types: (i) and (ii)
51. X-rays having wavelength of 4A° or above are called
52. X-rays having low wavelength in the order of 1A° are called
53. The penetrating power of hard X-rays is
54. When X-rays fall on certain metals, they liberate
55. To detect and measure the intensity of the X-rays is used.
56. Any plane containing an arrangement of atoms is known as a
57. Laue experiment is used to produce diffraction in
58. Bragg’s law is
59. Bragg’s spectrometer is used to measure
60. The minimum wavelength of the radiation emitted in continuous X-ray spectra is
61. When an electron jumps from M shell to the K shell, it gives in the case of characteristic X-rays.
62. The frequency of the spectral line in the characteristic X-rays is directly proportional to the square of the atomic number of the element. This is called law.
63. Moseley’s law has led to the discovery of new elements like
64. In normal population, the number atoms in the ground state is than the excited state.
65. If the number atoms in the ground state is lesser than the excited state, it is called
66. The life time of atoms in the excited state is normally
67. The life time of atoms in the metastable state is
68. A ruby is a crystal of, in which of Al⁺⁺⁺ ions are replaced by Cr⁺⁺⁺ ions.
69. The wavelength of green colour is
70. The wavelength of red colour is
71. He-Ne laser system consists of a quartz discharge containing helium and neon in the ratio of at a pressure of about 1mm of Hg.
72. The wavelength of the emitted photon in the He-Ne laser system
73. The beam that is used in endoscopy is
74. The beam that is used in holography is
75. The maser action is based on the principle of followed by stimulated emission.
76. The ions are used as maser materials.
77. Practical maser materials are often ions doped as impurities in ionic crystals.
78. Masers are used in
79. In maser, the emitted photon belongs to the frequencies.
80. The ratio of the radii of the first three orbits of an atom is
81. The cathode rays are a stream of
82. According to Bohr’s postulates quantity take discrete values.
83. For hydrogen atom, the minimum energy required to remove an electron from the first orbit to the outermost orbit is
84. According to Rutherford atom model, atoms will give only spectrum.
85. The elliptical orbits of electron in the atom were proposed by
86. X ray is the phenomenon of conversion of kinetic energy into
87. The chromium ions doped in the ruby rod absorbs light.
88. Canal rays travel than the cathode rays.
89. The spectra of alkali metals such as K, Na etc cannot be explained by atom model.
90. In laser, all the photons are in with each other.

B.ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA’S HR.SEC.SCHOOL, KANCHEEPURAM-631501.
1. The emission electrons from the metal surfaces when the electromagnetic radiations fall on them is called ……
2. Photoelectric effect phenomenon was discovered by ……….
3. Hallwachs experiment set-up is used to study ……… effect.
4. Photoelectric current is ……… proportion to the number of photoelectrons emitted per second.
5. The minimum negative potential given to the anode for which photoelectric current becomes zero is ……
6. If m is the mass of the photoelectron and \(v_{\text{max}} \) is the velocity, then the kinetic energy of the electron is ………
7. The stopping potential depends upon the ……… of the fastest electron.
8. For a given frequency of the incident radiation, the stopping potential is ……… of its intensity.
9. The minimum frequency of the incident radiation below which the photoelectric effect is not possible is called ……
10. Photoelectric emission is an ……… process.
11. The maximum kinetic energy of the photoelectrons is ……… proportional to the frequency of incident radiation
12. The electromagnetic theory of light could not explain ……….
13. According to the quantum theory, light is emitted in the form discrete bundles of energy called ………
14. The energy of the photon is \(E = \) ……….
15. In the phenomenon interference, the photon behaves like a ……….
16. In the phenomenon like emission, the photon behaves like a ……….
17. In 1905, Einstein, successfully applied ……… theory to photoelectric effect.
18. The energy spent in releasing the photoelectrons from a metal surface is called ………
19. Einstein’s photoelectric equation is ………
20. The photoelectric cell is a device which converts light energy into ……… energy.
21. Caesium oxide has ……… work function to give large number of photoelectrons.
22. The three types of the photoelectric cells are ………
23. Photoelectric cells are used to reproduce sound in ………
24. Photoelectric cells are used to control the temperatures of ………
25. Photoelectric cells are used to study the spectra and the temperatures of ………
26. In opening and closing of doors ……… cells are used.
27. In burglar and fire alarms ……… cells are used.
28. Matter in motion must be accompanied by waves called ………
29. The de Broglie wavelength of the de Broglie waves is ………
30. The de Broglie wavelength of the de Broglie waves is ………
31. The stationary orbits of electrons are those in which orbital circumference(2\(\pi r \)) is an integral multiple of ……
32. The electron microscope is used for ……… small objects.
33. The resolving power of the microscope is limited by the ……… of the radiation.
34. In an electron microscope, electrons are accelerated by a potential difference of about ……… volt.
35. The wavelength of the electron beam is about ………
36. The wavelength of the electron beam is ……… times smaller than that of the visible light.
37. In medicine and biology, the electron microscope is used study ………
38. Structure of crystals can be studied using ……… microscope.
39. In Einstein’s view, there is no absolute space and all motions are ………
40. The special theory of relativity was profounded by ………
41. In classical mechanics, the mass of the body is absolute and ………
42. A system of co-ordinate axes which defines the position of a particle in two or three dimensional space is called ………
43. When the bodies in a frame of reference obey Newton’s law of inertia, the frame is called ………
44. When the bodies in a frame of reference do not obey Newton’s law of inertia, the frame is called ………
45. The simplest frame of reference is the ……… co-ordinate system in which the position of a particle is specified by 3 co-ordinates.
46. The velocity of light in free space is a ……… in all frames of references.
47. A circular object will appear as an ……… for a fast moving observer.
48. The clocks in the moving space ships will appear to go ……… than the clocks on the earth.
49. The relation between the mass at rest (\(m_0 \)) and the mass of the same body moving with velocity \(v \) as
50. Einstein’s mass – energy equivalence is given by \(E = \) ………
1. The atomic nucleus was discovered by ………… in 1911.
2. Protons and neutrons inside the nucleus are called …………
3. The mass of the proton is ………… times greater than the mass of the electron.
4. The total number of protons and neutrons is called ………… number.
5. The total number of protons or the total number of electrons is called ………… number.
6. The atoms of the same element with same atomic number but different mass number are called ………
7. The isotopes have different number of ………
8. The ……… have identical chemical properties.
9. The atoms of different elements with same mass number but different atomic number are called ………
10. $^8\text{O}
^{16}\text{N}$ are called ……….
11. The isotopes of different elements have same number of ………….. Examples are ^8O, $^6\text{C}
^{14}\text{C}$
12. The empirical formula for the nuclear radius is ………
13. One fermi = ………….. kg.
14. The mass of one nucleon is approximately ………….. kg.
15. The nuclear density value is …………..
16. The charge value one proton is ………….. C.
17. One twelfth of the mass of the carbon atom ($^6\text{C}
^{12}\text{C}$) is called …………..
18. 1 amu = ………….. kg.
19. The mass of one proton = ………….. amu.
20. The mass of one neutron = ………….. amu.
21. 1 eV = ………….. J.
22. The energy equivalent of 1 amu is …………..
23. The binding energy = ………….. \times C2.
24. In BE/A curve, for A < 20, there exists peaks to those nuclei whose mass numbers are multiples of …………..
25. Binding energy per nucleon of the iron nucleus is …………..
26. BE/A is about ………….. for nuclei having mass numbers ranging between 40 and 120.
27. BE/A is about ………….. for uranium.
28. Mass spectrometer is used to find …………..
29. In Bainbridge mass spectrometer, ………….. arrangement selects ions of a particular velocity.
30. The force between the nucleons is called …………..
31. Nuclear force is ………….. times stronger than the gravitational force.
32. Nuclear force is strong between nucleons which are less than ………….. m.
33. Nuclear force is due to the continuous exchange of the particles called …………..
34. Radioactivity was discovered by ………….. in the year 1896.
35. Radium and polonium were discovered by …………..
36. The phenomenon of spontaneous emission of α, β, γ rays by elements having atomic number greater than 82 is called …………..
37. ………….. is unaffected by any external agent like pressure, temperature and electric, magnetic fields.
38. An α particle is a ………….. nucleus.
39. The ionising power of α rays is ………….. times greater than the β rays.
40. The displacement laws were framed by …………..
41. Radium is converted into radon in the ………….. decay.
42. In β decay, the atomic number increases by …………..
43. Theoretically, an ………….. time is needed for the disintegration of all the radioactive atoms.
44. The relation between half life period and the decay constant is …………..
45. The mean life period is ………….. proportional to the decay constant.
46. The rate at which the radioactive atoms decay is called …………..
47. 1 becquerel = …………..
48. The activity of a radioactive substance is generally expressed in …………..
49. Neutron was discovered by …………..
50. $^4\text{Be} \ + \ ………….. \rightarrow \ ^{6}\text{C} \ + \ ^{1}\text{H}$
51. Neutrons are the constituent particles of all nuclei, except
52. The half life period of an isolated neutron is
53. The energy of a slow moving neutron is
54. The energy of a fast moving neutron is
55. Induced radioactivity was discovered by in the year 1934.
56. Positron is emitted only in radioactivity.
57. The half life period of 7N is minutes.
58. The half life period of ^{13}P is minutes.
59. Radio-isotopes can be obtained using the particle accelerator like
60. ^{60}Co is used in the treatment of
61. ^{24}Na is used in the treatment of
62. ^{31}I is used in the treatment of
63. ^{59}Fe is used in the treatment of
64. ^{32}P is used in the treatment of
65. The ratio of ^{14}C and ^{12}C atoms in atmosphere is
66. The half life period of the radio-carbon is
67. The genetic damage is caused by rays.
68. If the radiation exposure is it may cause diseases like leukemia.
69. If the radiation exposure is , it causes death.
70. Safe limit of receiving the radiations is
71. The intensity of the radioactive radiation is measured by the device
72. The nuclei ^{13}Al and ^{14}Si are examples of
73. When $^{92}U^{235}$ is bombarded with a neutron, the value of the energy released is
74. Niels Bohr and John A. Wheeler explained the nuclear fission by model.
75. Natural uranium consists of of ^{238}U and of ^{235}U.
76. Atom bombs were exploded over in Japan.
77. Synchrocyclotron can accelerate particles to an energy of
78. In PHWR, is used as fuel.
79. The energy value of the thermal neutrons is
80. Cadmium or boron rods are called as rods.
81. A mixture of beryllium with plutonium is used as a source of
82. The boiling point of liquid sodium is
83. The name of the nuclear reactor in Kalpakkam is
84. The total power generation by all the operating power reactors is
85. The process of combining two or more number lighter nuclei to form a heavy nucleus is
86. The principle involved in hydrogen bomb is
87. The energy radiated per second by the sun is
88. In sun, hydrogen and helium are in a state called
89. In proton–proton cycle fusion, the energy released is in the order of
90. The study of cosmic rays started with experiment.
91. The intensity of cosmic rays is at the equator.
92. The intensity of cosmic rays is maximum at the height of km.
93. In pair production, the particles produced are
94. The name cosmic rays was given by
95. The energy of the primary cosmic rays is in the order of
96. The quantum of radiation with no charge and no mass is called
97. The rest mass of vary between 250 mp and 1000 mp.
98. The rest mass of the hyperons vary from
99. $^1H^3 + ^1H^2 \rightarrow ^3He^4 + + energy$.
100. In GM counter, the potential difference of about is applied through a high resistance of 100 mega ohm.
1. Germanium and Silicon are most widely used as
2. The resistivity of a semiconductor lies approximately between at room temperature.
3. A set of closely packed energy levels is called an
4. Each silicon atom has electrons.
5. The subshell 3p can accommodate a total of electrons.
6. The electrons in the outermost level are called electrons.
7. The energy gap between the valence band and the conduction band is called
8. In insulators, the forbidden energy gap is more than
9. In glass, the forbidden energy gap is in the order of at 0 K.
10. The resistivity of an insulator approximately lies between
11. The forbidden energy gap is of the order of for Germanium.
12. The forbidden energy gap is of the order of for Silicon.
13. The conductivity of a semiconductor is of the order of
14. The forbidden energy gap is of the order of eV for conductors.
15. A semiconductor in the purest form is called
16. In a pure Germanium semiconductor, the number of valence electrons is
17. In intrinsic semiconductors, the electrons and the holes move in the directions.
18. The process of addition of a very small amount of impurity into an intrinsic semiconductor is
19. When a small amount of impurity atoms are added to a pure semiconductor, it is
20. The valency bismuth, antimony, phosphorus etc is
21. The valency of aluminium, gallium, boron etc is
22. If arsenic is added to a pure germanium, the resulting crystal is called
23. If boron is added to a pure germanium, the resulting crystal is called
24. In N-type semiconductor, are the majority charge carriers.
25. In P-type semiconductor, are the majority charge carriers.
26. The region which does not have any mobile charges very close to the PN junction is called
27. In a PN junction diode, the potential barrier is approximately for a silicon PN junction.
28. In a PN junction diode, the potential barrier is approximately for a germanium PN junction.
29. In a PN junction diode forward bias, the potential barrier is
30. In a PN junction diode reverse bias, the potential barrier is
31. In a PN junction diode forward bias, the current is of the order of
32. In a PN junction diode reverse bias, the current is of the order of
33. The circuit symbol for a semiconductor diode is
34. In a PN junction diode forward bias, V / I is not a
35. The conversion of AC into DC is called
36. A circuit which rectifies half of the a.c wave is called rectifier.
37. The ratio of the d.c power output to the a.c power input is known as rectifier
38. The efficiency of a half wave rectifier is approximately
39. The efficiency of a bridge rectifier is approximately
40. There are two mechanisms which give rise to the breakdown of a PN junction under reverse bias condition. They are (i) breakdown and (ii) breakdown.

Continued in Page - 2
41. The reverse biased heavily doped semiconductor PN junction diode, which is operated in the breakdown region is called
42. In a Zener diode, at a particular reverse bias voltage called , the current increases enormously.
43. A forward biased PN junction diode which emits visible light when energized is called
44. In instrument displays, calculators and digital watches are used.
45. In a junction transistor, the thickness of the base layer is about
46. In a junction transistor, the region is heavily doped.
47. In a junction transistor, the region physically larger in size.
48. In a junction transistor, the emitter–base junction is biased.
49. In a junction transistor, the collector–base junction is biased.
50. In a CB mode transistor circuit, the current gain
51. In CE mode transistor circuit, the current gain is given by
52. The value of lies between and
53. Usually lies between and
54. The relation between and is
55. In a transistor, the ratio between emitter-base potential and base current is called
56. In the output characteristics, the region below the curve for is called region.
57. In a transistor, the ratio between emitter-collector potential and collector current is called
58. In a transistor, the ratio between collector current and the base current is called
59. A circuit capable of magnifying the amplitude of weak signals is called
60. There is always a phase reversal of between the input and the output voltages in CE amplifier.
61. of a transistor is very to temperature changes.
62. In an amplifier, the ratio of the output and the input voltages is called
63. The frequency response curve gives the relation between
64. The frequency interval between lower cut off and upper cut off frequencies is called
65. When a fraction of the output signal is combined with the input, is said to exist in an amplifier.
66. If the magnitude of the input signal is reduced by the feedback, the feedback is called
67. If the magnitude of the input signal is increased by the feedback, it is called
68. The voltage gain of the amplifier with feedback
69. The term is called and is called feedback ratio.
70. The circuit which converts energy from d.c source into a periodically varying output is called
71. Two types of oscillators are (i) and (ii)
72. If an oscillator generates a rectangular wave, it is called oscillator.
73. In a tank circuit, the frequency of oscillation is given by
74. In Colpitt’s oscillator, the total phase shift between the input and output is
75. In Colpitt’s oscillator, the frequency of oscillation is given by
76. Diodes and transistors are called elements.
77. Resistors and capacitors are called elements.
78. ICs are broadly classified as ICs and ICs.
79. Circuits which are used to process digital signals are called
80. If the signal current is in the form of continuous, time varying current, the signal is called

Continued. Page – 3
81. The integrated circuits are available in …………………
82. The integrated circuits which process the analog signals are called …………………
83. The typical IC chip sizes from about 40 X 40 mils to about …………………
84. The Boolean equation of a OR gate is \(y = \) …………………
85. The Boolean equation of a AND gate is \(y = \) …………………
86. The Boolean equation of a NOT gate is \(y = \) …………………
87. The Boolean equation of a EX-OR gate is ………………..
88. The Boolean equation of a NOR gate is ………………..
89. The Boolean equation of a NAND gate is ………………..
90. The NAND and NOR gates are called ………………..
91. First De Morgan’s theorem is ………………..
92. Second De Morgan’s theorem is ………………..
93. OP-AMP consists of ……………….. transistors, ……………….. resistors and ……………….. capacitor.
94. In an inverting amplifier, the output voltage \(V_{out} = \) ………………..
95. In a non-inverting amplifier, the output voltage \(V_{out} = \) ………………..
96. In a summing amplifier, the output voltage \(V_{out} = \) ………………..
97. In a difference amplifier, the output voltage \(V_{out} = \) ………………..
98. The property of the cathode rays being deflected by ……………….. used in CRO.
99. If the emitter current is 1 mA, then the collector current is approximately equal to ………………..
100. The unit of current gain and out impedance are ……………….. and ……………….. respectively.
101. Multimeter is used to measure ………………..
102. Multimeter is also called as ……………….. meter.
103. To measure AC voltage and current, a ……………….. unit is connected in series.
104. In a CRO the inner surface where the electron beam strikes is coated with ………………..
105. The active and passive elements in an electronic circuit can be tested using ………………..
106. The summing amplifier provides an output voltage equal to the algebraic sum of the ………………..
107. OP-AMP is a solid state device capable of ……………….. dc and ac input signals.
108. \((A + B)(A + C) = \) ………………..
109. \(A \bar{A} = \) ………………..
110. \(A + B = B + A \) & \(AB = BA \) are ………………..
111. \(A + (B + C) = (A + B) + C\) & \(A (BC) = (AB) C\) are call ………………..
112. Distributive law is \(A (B + C) = \) ………………..
113. In an LC oscillator, the feedback circuit provides ………………..
114. If \(A \beta = 1\) and the net phase shift round the loop is \(0^\circ\) or integral multiples of \(2\pi\), these are called as ……………….. conditions for oscillations.
115. Multivibrator is an example of ……………….. oscillator.
116. In an amplifier, the voltage gain \(A = V_o / V_i\). The gain A is often called as ……………….. gain.
117. \(A + 1 = \) ………………..
118. NOT gate is often called as an ………………..
119. In switching operations ……………….. are used.
120. The common emitter configuration has high input impedance, low output impedance and higher current gain when compared with ………………..

B.ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA’S HR.SEC.SCHOOL, KANCHEEPURAM-631501.
1. Sending, receiving and processing of information electronically is called ………..
2. In 1840’s, communication started with ……………
3. Radio communication was made possible by the invention of the ……………
4. Radar, telemetry and satellite links play vital role in …………… etc.
5. For communication purposes, …………… are used.
6. High frequency waves follow …………… propagation.
7. All medium wave signals received during the day time use …………… propagation.
8. The radio waves which travel along the surface of the earth are called ……………
9. Ground wave propagation is used only for ……………
10. Radio waves propagated through the troposphere of the earth are known as ……………
11. The portion of the earth’s atmosphere which extends up to 15 km from the surface of the earth is called ……………
12. Space wave propagation is particularly suitable for the waves having frequencies above ……………
13. The ionised region containing free electrons, positive and negative ions in the earth’s atmosphere is called ……………
14. Long distance radio communication is possible through the ……………
15. The refractive indices of the various layers in the ionosphere vary with respect to ……… and ……… of the incident wave.
16. In the sky wave propagation, for a fixed frequency, the shortest distance between the point of transmission and the point of reception along the surface is known as ……………
17. The region between the point where there is no reception of ground waves and the point where the sky wave is received first is known as ……………
18. In the skip zone, there is …………… at all.
19. The audio frequency ranges from ……………
20. The process of changing amplitude or frequency or phase of the carrier wave (RF wave) in accordance with the intensity of the signal wave (AF wave) is called ……………
21. The process of changing amplitude of the carrier wave in accordance with the intensity of the signal wave is called ……………
22. The ratio of the amplitude change of the carrier wave after modulation to the amplitude of the carrier wave before modulation is called ……………
23. Signal amplitude / carrier amplitude is called as ……………
24. The strength and the quality of the transmitted signal can be determined by the ……………
25. When the modulation factor is …………………, the transmitted signal will not be very strong.
26. When the modulation factor is greater than one, ………………… is produced in the transmitted signal.
27. For effective modulation, the degree of modulation should never exceed ……………
28. A carrier wave may be represented by \(e_c = \) …………………
29. The modulating signal may be represented by \(e_s = \) …………………
30. In AM, the component having a frequency greater than that of the carrier wave is called as the ……………
31. In AM, the component having a frequency lesser than that of the carrier wave is called as the ……………
32. The magnitude of both the upper and lower side bands is ………………… times the carrier amplitude \(E_c \).
33. In an AM wave, the ………………… is from \((\omega_c - \omega_s) \) to \((\omega_c + \omega_s) \) i.e. twice the signal frequency.

………………. Continued in Page – 2
34. The difference between maximum frequency of USB and the minimum frequency of the LSB is called the ………
35. The channel width = …………… X maximum frequency of the modulating signal.
36. In an AM wave, the reception is generally …………….
37. The efficiency of AM wave is ……………
38. The messages cannot be transmitted over long distances in ……………
39. The process of changing frequency of the carrier wave in accordance with the intensity of the signal wave is called ………
40. The frequency of the FM transmitter without signal input is called ……………
41. The change or shift either above or below the resting frequency is called ……………
42. Carrier swing = 2 X ……………
43. FM receiver gives …………… reception.
44. A much wider channel is required by ……………
45. The process of changing phase of the carrier wave in accordance with the intensity of the signal wave is called ……………
46. The phase modulation generally uses a …………………. bandwidth than FM.
47. The centre frequency is extremely stable in ………………… modulation.
48. A modulator performs the process called ……………
49. Frequency modulated systems are operated usually at a frequency above ……………
50. The difference between oscillator frequency and radio frequency is called as ………………… frequency.
51. In a superheterodyne receiver, the output from the mixer will have a frequency of ………………… kHz.
52. In television, usually sound signals are ………………… modulated and picture signals are amplitude modulated.
53. A television camera converts the light energy into …………………
54. A blanking pulse is a high negative potential applied to the …………………. of the electron gun.
55. The horizontal scanning frequency is as …………………
56. In a 625 line system, transmitting 25 frames per second, the horizontal scanning frequency is ………………… Hz.
57. In a 625 line system, transmitting 25 frames per second, time taken to scan one line is …………………
58. Optical fibers are used for transmission of …………………
59. The system which uses radio waves to detect and to fix the position of targets at a distance is called as …………………
60. Radar works on the principle of …………………
61. Air and sea navigation is made entirely safe with ………………… installations.
62. Radar systems are used for the safe landing of …………………
63. An analog signal is a continuously varying …………………
64. The greatest technical problem with an analog communication system is …………………
65. A digital system requires larger …………………
66. The name ………………….. is the abbreviation of the term Modulator and Demodulator.
67. The device that is used to convert digital signals into analog signals capable of being transmitted over telephone lines is called as …………………
68. The electronic system for transmitting graphical information by wire or radio is called as …………………
69. The types of wire and cable used in data communications are (a) twisted pair (b) multiconductor flat cable and (c) ……
70. Coherent light can be generated with laser or by ……………
71. Coherent light can be detected by ……………
72. The principle of …………… is used for the transmission of light signals through an optical fiber.
73. The people over world watch international events like Olympic games via ……………
74. The angular velocity of the geostationary satellite around the earth is equal to the angular velocity of ……………
75. Satellite orbiting the earth will be geostationary when it is about ……………….. km away from the earth.
76. The downlink frequencies are kept different from the uplink frequencies in order to avoid ……………
77. The downlink frequencies are kept different from the uplink frequencies by ……………
78. The frequency of the crystal controlled oscillator is kept constant by …………… which separates RF power amplifier from the oscillator.
79. The superheterodyne receiver will have maximum stability, selectivity and ……………
80. Vidicon camera tube is a ……………. camera tube.
81. For scanning a picture, the three synchronising pulses that are used are ……………
82. The propagation of EM waves depend on the properties of the waves and the ……………
83. Radio waves ordinarily travel in ……………
84. The advantages of amplitude modulation are i) easy transmission and reception ii) lesser bandwidth requirements iii) ……………
85. The efficiency of FM transmission is very high.
86. The two sections of amplitude modulated transmitter are i) AF section and ii) ……………
87. The ……………….. amplifier isolates the RF power amplifier from the oscillator. This arrangement keeps the frequency of the crystal controlled oscillator as a constant.
88. The phase modulation is essentially a ……………. modulation.
89. In FM transmitter, ………………. network makes all the frequencies in the modulating signal to have equal power.
90. Simple radio receiver circuit has i) poor sensitivity and ii) ……………
91. For FM receivers, the IF is ……………
92. Television literally means ……………
93. The transmitter and receiver switch in a radar is called as ……………
94. In a radar, the ……………….. generates periodic pulses of very short duration.
95. The bit is a contraction of the term ……………
96. The region of the atmosphere which contains ions is ……………
97. In ………………. modulation, both the phase and the frequency of the carrier wave varies.
98. The printed documents to be transmitted by fax are converted into electrical signals by the process ……………
99. The purpose of dividing each frame into two fields so as to transmit 50 views of the picture per second is to avoid ……………
100. The RF channel in a radio transmitter produces high frequency ……………
1. At atmospheric pressure, air and other gases are poor conductors of electricity.
2. Electric current may be passed through a gas by allowing gas to pass through them.
3. Electrons were discovered by J.J. Thomson.
4. ……… is an arrangement to study the conduction of electricity through gases.
5. In a discharge tube, the potential difference applied between the two electrodes is 50,000 V.
6. In a discharge tube, the discharge of electricity through gases starts at a pressure of about 10 mm of Hg.
7. In a discharge tube, the positive column is produced at a pressure of about 100 mm of Hg.
8. In a discharge tube, Crooke’s dark space is produced at a pressure of about 0.01 mm of Hg.
9. Cathode rays travel with a velocity up to 1000 m/s of the velocity of light.
10. Canal rays were discovered by E. Goldstein.
11. In 1887, J.J. Thomson measured the specific charge of the cathode ray particles.
12. If V is the potential difference between the two plates and d is the distance between them, then
 \(E = \frac{1.7592 \times 10^{11} \text{ C kg}^{-1}}{\text{V/m}} \).
13. \(e / m \) value of the electron is 1.776 X 10^-10 C kg^-1.
14. Millikan’s experiment is used for the measurement of charge of an electron.
15. In Millikan’s experiment, the potential difference applied between the two electrodes is 1.602 X 10^-19 C.
16. The diameter of the atom is about 10^-10 m.
17. The spectral lines of Lyman series of hydrogen atom lie in the ultraviolet region.
18. The spectral lines of Balmer series of hydrogen atom lie in the visible region.
20. According to the Sommerfeld’s atom model, for any principal quantum number n, there are n possible sub-shells, out of which one is circular and the remaining two are elliptical in shape.
21. Atom is a sphere of positive charge in which the electrons are embedded. This was suggested by Dalton.
22. In the case of hydrogen atom, Thomson’s model gives only one spectral line of about 1300 Å.
23. In Millikan’s experiment, the charge value of the electron is –1.602 X 10^-19 C.
24. In Millikan’s experiment, the charge of the electron \(q = \frac{1}{6} \pi \eta a \) g.
25. The radius of the n-th orbit does not radiate any energy.
26. According to electromagnetic theory, an accelerated electric charge must radiate energy in the form of electromagnetic waves.
27. An electron revolving in the stationary orbit does not radiate any energy.
28. According to Bohr’s quantization condition, the angular momentum of the electron = \(\frac{nh}{2\pi} \).
29. The radius of the n-th orbit of the electron is proportional to the square of the principal quantum number.
30. Bohr radius value \(r_1 = \frac{\pi e^2}{\epsilon_0 m c} \).
31. The energy of the electron \(E_n = \frac{1}{2} \frac{m c^2}{r_1} \).
32. 1 electron volt = \(\frac{1.602 X 10^{-14} \text{ J}}{\text{eV}} \).
33. Rydberg’s constant value \(R = \frac{1}{6} \pi \eta a \) g.
34. The spectral lines of Paschen series of hydrogen atom lie in the infrared region.
35. The spectral lines of Balmer series of hydrogen atom lie in the visible region.
36. The spectral lines of Lyman series of hydrogen atom lie in the ultraviolet region.
37. The spectral lines of Pfund series of hydrogen atom lie in the infrared region.
38. The fine structure of spectral lines can not be explained by Stark, Zeeman theory.
39. The wavelengths of D lines of sodium are \(5896 \text{ Å} \) and \(5890 \text{ Å} \).
40. The energy required to raise an atom from its normal state into an excited state is called the excitation potential energy.
41. The value of ionization potential energy for hydrogen atom is 13.6 eV.
42. The fine structure of spectral lines can not be explained by Bohr’s theory.
43. It is found that when electric or magnetic field is applied to the atom, each of the spectral line is split into several lines. These effects are called Stark and Zeeman effects.
44. According to Sommerfeld’s atom model, for any principal quantum number n, there are n possible sub-shells, out of which one is circular and the remaining two are elliptical in shape.
45. X-rays were discovered by Roentgen.

………. continued in Page - 2
UNIT – 6 ATOMIC PHYSICS

Page – 2

46. X-rays are electromagnetic waves of short wavelength in the range of
47. Roentgen was awarded Nobel prize in 1901 for the discovery of
48. When fast moving electrons are suddenly stopped by a metallic target, are produced.
49. In Coolidge tube, a high potential of about is applied between filament F and the target T.
50. X-rays are of two types: (i) and (ii)
51. X-rays having wavelength of 4A° or above are called
52. X-rays having low wavelength in the order of 1A° are called
53. The penetrating power of hard X-rays is
54. When X-rays fall on certain metals, they liberate
55. To detect and measure the intensity of the X-rays is used.
56. Any plane containing an arrangement of atoms is known as a
57. Laue experiment is used to produce diffraction in
58. Bragg’s law is
59. Bragg’s spectrometer is used to measure
60. The minimum wavelength of the radiation emitted in continuous X-ray spectra is
61. When an electron jumps from M shell to the K shell, it gives in the case of characteristic X-rays.
62. The frequency of the spectral line in the characteristic X-rays is directly proportional to the square of the atomic number of the element. This is called law.
63. Moseley’s law has led to the discovery of new elements like
64. In normal population, the number atoms in the ground state is than the excited state.
65. If the number atoms in the ground state is lesser than the excited state, it is called
66. The life time of atoms in the excited state is normally
67. The life time of atoms in the metastable state
68. A ruby is a crystal of in which of Al³⁺ ions are replaced by Cr³⁺ ions.
69. The wavelength of green colour is
70. The wavelength of red colour is
71. He-Ne laser system consists of a quartz discharge containing helium and neon in the ratio of at a pressure of about 1mm of Hg.
72. The wavelength of the emitted photon in the He-Ne laser system
73. The beam that is used in endoscopy is
74. The beam that is used in holography is
75. The maser action is based on the principle of followed by stimulated emission.
76. The ions are used as maser materials.
77. Practical maser materials are often ions doped as impurities in ionic crystals.
78. Maser is used in
79. In maser, the emitted photon belongs to the frequencies.
80. The ratio of the radii of the first three orbits of an atom is
81. The cathode rays are a stream of
82. According to Bohr’s postulates quantity take discrete values.
83. For hydrogen atom, the minimum energy required to remove an electron from the first orbit to the outermost orbit is
84. According to Rutherford atom model, atoms will give only spectrum.
85. The elliptical orbits of electron in the atom were proposed by
86. X-ray is the phenomenon of conversion of kinetic energy into
87. The chromium ions doped in the ruby rod absorbs light.
88. Canal rays travel than the cathode rays.
89. The spectra of alkali metals such as K, Na etc cannot be explained by atom model.
90. In laser, all the photons are in with each other.

B.ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA’S HR.SEC.SCHOOL, KANCHEEPURAM-631501.
1. The emission of electrons from the metal surface when the electromagnetic radiations fall on them is called **photoelectric effect**.

2. Photoelectric effect phenomenon was discovered by **Hertz**.

3. Hallwachs experiment set-up is used to study **work function** effect.

4. Photoelectric current is **proportional** to the number of photoelectrons emitted per second.

5. The minimum negative potential given to the anode for which photoelectric current becomes zero is **threshold frequency**.

6. If m is the mass of the photoelectron and v_{max} is the velocity, then the kinetic energy of the electron is $\frac{1}{2} m v_{\text{max}}^2$.

7. The stopping potential depends upon the velocity of the fastest electron.

8. For a given frequency of the incident radiation, the stopping potential is **proportional** to its intensity.

9. The minimum frequency of the incident radiation below which the photoelectric effect is not possible is called **cut-off potential**.

10. Photoelectric emission is an **instantaneous** process.

11. The maximum kinetic energy of the photoelectrons is **proportional** to the frequency of incident radiation.

12. The electromagnetic theory of light could not explain **quantum** effect.

13. According to the quantum theory, light is emitted in the form of discrete bundles of energy called **photons**.

14. The energy of the photon is $E = h\gamma$.

15. In the phenomenon of interference, the photon behaves like a **wave**.

16. In the phenomenon like emission, the photon behaves like a **particle**.

17. In 1905, Einstein successfully applied **quantum** theory to photoelectric effect.

18. The energy spent in releasing the photoelectrons from a metallic surface is called **photoelectric work function**.

19. Einstein's photoelectric equation is $h\gamma = \frac{1}{2} m v_{\text{max}}^2$.

20. The photoelectric cell is a device which converts light energy into **electrical** energy.

21. Caesium oxide has **photoelectric** directly work function to give large number of photoelectrons.

22. The three types of the photoelectric cells are **photo emissive**, **photo voltaic**, **photo conductive** cells.

23. Photoelectric cells are used to reproduce sound in **cinematography**.

24. Photoelectric cells are used to **study the spectra** and the temperatures of furnaces.

25. Photoelectric cells are used to study the spectra and the temperatures of stars.

26. In opening and closing of doors **non -inertial** cells are used.

27. In burglar and fire alarms **photoelectric** cells are used.

28. Matter in motion must be accompanied by waves called **de Broglie** waves.

29. The de Broglie wavelength of the de Broglie waves is $\lambda = \frac{h}{mv}$.

30. The de Broglie wavelength of the de Broglie waves is $\lambda = 12.27 \ A^0 / (V^{1/2})$.

31. The stationary orbits of electrons are those in which orbital circumference $(2\pi r)$ is an integral multiple of λ.

32. The resolving power of the microscope is limited by the magnifying power.

33. The wavelength of the electron beam is λ times smaller than that of the visible light.

34. In medicine and biology, the electron microscope is used to study virus and bacteria.

35. Structure of crystals can be studied using microscope.

36. In Einstein's view, there is no absolute space and all motions are relative.

37. In classical mechanics, the mass of the body is absolute and constant.

38. A system of co-ordinate axes which defines the position of a particle in two or three dimensional space is **Cartesian** frame of reference.

39. When the bodies in a frame of reference obey Newton's Law of Inertia, the frame is called **inertial** frame of reference.

40. When the bodies in a frame of reference do not obey Newton's Law of Inertia, the frame is called **non -inertial** frame of reference.

41. The simplest frame of reference is the **Cartesian** co-ordinate system in which the position of a particle is specified by 3 co-ordinates.

42. The velocity of light in free space is a **constant** in all frames of reference.

43. A circular object will appear as an **ellipse** for a fast moving observer.

44. The clocks in the moving space ships will appear to go **slower** than the clocks on the earth.

45. The relation between the mass at rest (m_0) and the mass of the same body moving with velocity v as $\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$.

46. Einstein's mass – energy equivalence is given by $E = mc^2$.

B. ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA'S HR.SEC.SCHOOL, KANCHEEPURAM-631501.
1. The atomic nucleus was discovered by …………. in 1911.
2. Protons and neutrons inside the nucleus are called ……….
3. The mass of the proton is ……… times greater than the mass of the electron.
4. The total number of protons and neutrons is called ……… number.
5. The total number of protons or the total number of electrons is called ……… number.
6. The atoms of the same element with same atomic number but different mass number are called ……….
7. The isotopes have different number of ……….
8. The …………. have identical chemical properties.
9. The atoms of different elements with same mass number but different atomic number are called ……….
10. The mass of the proton is 1.67 X 10 \(^{-27}\) kg.
11. The isotopes have different number of ……….
12. The empirical formula for the nuclear radius is \(R = r \ A^{\frac{1}{3}} \).
13. One fermi = …………..
14. The charge value one proton is ………. C.
15. One twelfth of the mass of the carbon atom \(^{12}\text{C} \) is called …………..
16. One amu = …………. kg.
17. The mass of one proton = ………. amu.
18. The mass of one neutron = ………. amu.
19. 1 eV = …………. J.
20. The energy equivalent of 1 amu is 931 MeV.
21. The binding energy = ………….. X C.
22. In BE / A curve, for A < 20, there exists peaks to those nuclei whose mass numbers are multiples of ……….
23. Binding energy per nucleon of the iron nucleus is ………….
24. The force between the nucleons is called …………..
25. Radioactivity was discovered by ………… in the year 1896.
26. Radium and polonium were discovered by ………….
27. Radioactivity is unaffected by any external agent like pressure, temperature and electric, magnetic fields.
28. A particle is a …………. nucleus.
29. The ionising power of \(\alpha \) rays is ……… times greater than the \(\beta \) rays.
30. The displacement laws were framed by ………….
31. Radium is converted into radon in the ………. decay.
32. In \(\beta \) decay, the atomic number increases by ………….
33. Theoretically, an …………. time is needed for the disintegration of all the radioactive atoms.
34. The relation between half life period and the decay constant is ………….
35. The mean life period is …………. proportional to the decay constant.
36. The rate at which the radioactive atoms decay is called ………….
37. ………….. is unaffected by any external agent like pressure, temperature and electric, magnetic fields.
38. An \(\alpha \) particle is a …………. nucleus.
39. The ionising power of \(\alpha \) rays is ……… times greater than the \(\beta \) rays.
40. The displacement laws were framed by ………….
41. Radium is converted into radon in the ………. decay.
42. In \(\beta \) decay, the atomic number increases by ………….
43. Theoretically, an …………. time is needed for the disintegration of all the radioactive atoms.
44. The relation between half life period and the decay constant is ………….
45. The mean life period is …………. proportional to the decay constant.
46. The rate at which the radioactive atoms decay is called ………….
47. 1 becquerel = ………….
48. The activity of a radioactive substance is generally expressed in ………….
49. Neutron was discovered by ………….
50. \(^{4}\text{Be} + \cdots \rightarrow ^{12}\text{C} + \cdots + ^{1}\text{n} \)
51. Neutrons are the constituent particles of all nuclei, except
52. The half life period of an isolated neutron is
53. The energy of a slow moving neutron is
54. The energy of a fast moving neutron is
55. Induced radioactivity was discovered by in the year 1934.
56. Positron is emitted only in radioactivity.
57. The energy of a slow moving neutron is
58. The energy of a fast moving neutron is
59. Induced radioactivity was discovered by in the year 1934.
60. Positron is emitted only in radioactivity.
61. The half life period of is minutes.
62. The half life period of is minutes.
63. Radio-isotopes can be obtained using the particle accelerator like
64. Co is used in the treatment of
65. Na is used in the treatment of
66. I is used in the treatment of
67. Fe is used in the treatment of
68. The ratio of C and C atoms in atmosphere is
69. The ratio of C and C atoms in atmosphere is
70. Safe limit of receiving the radiations is
71. The energy released is
72. The energy released is
73. Cyclotron
74. The principle involved in hydrogen bomb is
75. The principle involved in hydrogen bomb is
76. The principle involved in hydrogen bomb is
77. The principle involved in hydrogen bomb is
78. The principle involved in hydrogen bomb is
79. The principle involved in hydrogen bomb is
80. The principle involved in hydrogen bomb is
81. The principle involved in hydrogen bomb is
82. The principle involved in hydrogen bomb is
83. The principle involved in hydrogen bomb is
84. The principle involved in hydrogen bomb is
85. The principle involved in hydrogen bomb is
86. The principle involved in hydrogen bomb is
87. The principle involved in hydrogen bomb is
88. The principle involved in hydrogen bomb is
89. The principle involved in hydrogen bomb is
90. The principle involved in hydrogen bomb is
91. The principle involved in hydrogen bomb is
92. The principle involved in hydrogen bomb is
93. The principle involved in hydrogen bomb is
94. The principle involved in hydrogen bomb is
95. The principle involved in hydrogen bomb is
96. The principle involved in hydrogen bomb is
97. The principle involved in hydrogen bomb is
98. The principle involved in hydrogen bomb is
99. The principle involved in hydrogen bomb is
100. The principle involved in hydrogen bomb is

B.ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA’S HR.SEC.SCHOOL, KANCHEEPURAM-631501.
1. Germanium and Silicon are most widely used as ………… semiconductor.
2. The resistivity of a semiconductor lie approximately between ……… at room temperature.
3. A set of closely packed energy levels is called an ………… energy band.
4. Each silicon atom has ………… electrons.
5. The subshell 3p can accommodate a total of ………… electrons.
6. The electrons in the outermost level are called ………… electrons.
7. The energy gap between the valence band and the conduction band is called …………
8. In insulators, the forbidden energy gap is more than …………
9. In glass, the forbidden energy gap is in the order of ………… at 0 K.
10. The resistivity of insulator approximately lies between ………… 10^-2 and 10^-4 Ωm.
11. The subshell 3p can accommodate a total of ………… electrons.
12. The electrons in the outermost level are called ………… electrons.
13. The energy gap between the valence band and the conduction band is called …………
14. In a pure Germanium semiconductor, the number of valence electrons is …………
15. The valency of aluminium, gallium, boron etc is ………….
16. If arsenic is added to a pure germanium, the resulting crystal is called …………
17. In intrinsic semiconductors, the electrons and the holes move in the ………… directions.
18. The process of addition of a very small amount of impurity into an intrinsic semiconductor is …………
19. When a small amount of impurity atoms are added to a pure semiconductor, it is …………
20. The valency of bismuth, antimony, phosphorus etc is ………….
21. The valency of aluminium, gallium, boron etc is ………….
22. If arsenic is added to a pure germanium, the resulting crystal is called …………
23. In intrinsic semiconductors, the electrons and the holes move in the ………… directions.
24. In N-type semiconductor, ………… are the majority charge carriers.
25. In P-type semiconductor, ………… are the majority charge carriers.
26. The region which does not have any mobile charges very close to the PN junction is called …………
27. In a PN junction diode, the potential barrier is approximately ………… for a silicon PN junction.
28. In a PN junction diode, the potential barrier is approximately ………… for a germanium PN junction.
29. In a PN junction diode forward bias, the potential barrier is ………….
30. In a PN junction diode reverse bias, the potential barrier is ………….
31. In a PN junction diode forward bias, the current is of the order of ………….
32. In a PN junction diode reverse bias, the current is of the order of ………….
33. The circuit symbol for a semiconductor diode is ………….
34. In a PN junction diode forward bias, V / I is not a ………… constant.
35. The conversion of AC into DC is called ………… rectification.
36. A circuit which rectifies half of the a.c wave is called ………… rectifier.
37. The ratio of the d.c power output to the a.c power input is known as rectifier …………
38. The efficiency of a half wave rectifier is approximately …………
39. The efficiency of a bridge rectifier is approximately …………
40. There are two mechanisms which give rise to the breakdown of a PN junction under reverse bias condition. They are (i) ………… breakdown and (ii) ………… breakdown.
41. The reverse biased heavily doped semiconductor PN junction diode, which is operated in the breakdown region is called
42. In a Zener diode, at a particular reverse bias voltage called, the current increases enormously.
43. A forward biased PN junction diode which emits visible light when energized is called
44. In instrument displays, calculators and digital watches are used.
45. In a junction transistor, the thickness of the base layer is about
46. In a junction transistor, the region is heavily doped.
47. In a junction transistor, the region physically larger in size.
48. In a junction transistor, the emitter – base junction is biased.
49. In a junction transistor, the collector – base junction is biased.
50. In a CB mode transistor circuit, the current gain $\alpha =$
51. In CE mode transistor circuit, the current gain is given by $\beta =$
52. The value of α lies between and
53. Usually β lies between and
54. The relation between α and β is $\beta =$
55. In a transistor, the ratio between emitter-base potential and base current is called
56. In the output characteristics, the region below the curve for $I_B=0$ is called region.
57. In a transistor, the ratio between emitter-collector potential and collector current is called
58. In a transistor, the ratio between collector current and the base current is called
59. A circuit capable of magnifying the amplitude of weak signals is called
60. There is always a phase reversal of between the input and the output voltages in CE amplifier. 180°
61. β of a transistor is very to temperature changes.
62. In an amplifier, the ratio of the output and the input voltages is called
63. The frequency response curve gives the relation between frequency and the voltage gain
64. The frequency interval between lower cut off and upper cut off frequencies is called
65. When a fraction of the output signal is combined with the input, is said to exist in an amplifier. feed back
66. If the magnitude of the input signal is reduced by the feedback, the feedback is called
67. If the magnitude of the input signal is increased by the feedback, it is called
68. The voltage gain of the amplifier with feedback
69. The term $A\beta$ is called and β is called feedback ratio.
70. The circuit which converts energy from d.c source into a periodically varying output is called
71. Two types of oscillators are (i) and (ii)
72. If an oscillator generates a rectangular wave, it is called oscillator.
73. In a tank circuit, the frequency of oscillation is given by $f =$
74. In Colpitt's oscillator, the total phase shift between the input and output is
75. In Colpitt's oscillator, the frequency of oscillation is given by $f =$
76. Diodes and transistors are called elements.
77. Resistors and capacitors are called elements.
78. ICs are broadly classified as ICs and ICs.
79. Circuits which are used to process digital signals are called
80. If the signal current is in the form of continuous, time varying current, the signal is called

Continued..................... Page - 3
81. The integrated circuits are available in
82. The integrated circuits which process the analog signals are called linear ICs
83. The typical IC chip sizes from about 40 X 40 mils to about
84. The Boolean equation of a OR gate is y =
85. The Boolean equation of a AND gate is y =
86. The Boolean equation of a NOT gate is y =
87. The Boolean equation of a Ex-OR gate is
88. The Boolean equation of a NOR gate is
89. The NAND and NOR gates are called
90. First De Morgan’s theorem is
91. Second De Morgan’s theorem is
92. OP-AMP consists of transistors, resistors and capacitor.
93. In an inverting amplifier, the output voltage $V_{out} =$
94. In a non-inverting amplifier, the output voltage $V_{out} =$
95. In a summing amplifier, the output voltage $V_{out} =$
96. In a difference amplifier, the output voltage $V_{out} =$
97. The property of the cathode rays being deflected by used in CRO.
98. If the emitter current is 1 mA, then the collector current is approximately equal to
99. The unit of current gain and output impedance areand respectively.
100. Multimeter is used to measure
101. Multimeter is also called as meter.
102. To measure AC voltage and current, a unit is connected in series.
103. In a CRO the inner surface where the electron beam strikes is coated with
104. The active and passive elements in an electronic circuit can be tested using
105. The summing amplifier provides an output voltage equal to the algebraic sum of the
106. OP-AMP is a solid state device capable ofdc and ac input signals.
107. ($\bar{A} + B$) ($A + C$) =
108. A, \bar{A} =
109. A+B = B+A & AB = BA are
110. A + (B+C) = (A+B) + C & A (BC) = (AB) C are called
111. Distributive law is A (B+C) =
112. In an LC oscillator, the feedback circuit provides
113. If $\alpha\beta = 1$ and the net phase shift round the loop is 0° or integral multiples of 2π, these are called as conditions for oscillations.
114. Multivibrator is an example of oscillator.
115. In an amplifier, the voltage gain $A = V_0 / V_i$. The gain A is often called as gain.
116. A + 1 =
117. NOT gate is often called as an
118. In switching operationsare used.
119. The common emitter configuration has high input impedance, low output impedance and higher current gain when compared with

B.ELANGOVAN. M.Sc., M.Ed., M.Phil., PACHAIYAPPA’S HR.SEC.SCHOOL, KANCHEEPURAM-631501
1. Sending, receiving and processing of information electronically is called …………
 - Communication
2. In 1840’s, communication started with …………
 - Telegraphy
3. Radio communication was made possible by the invention of the ……….
 - Electronic valves
4. Radar, telemetry and satellite links play vital role in ………… etc.
 - Navigation, defence, scientific research
5. For communication purposes, ………… are used.
 - Radio waves and microwaves
6. High frequency waves follow ………… propagation.
 - Ionospheric
7. All medium wave signals received during the day time use ………… propagation.
 - Surface wave
8. The radio waves which travel along the surface of the earth are called ………
 - Ground or surface waves
9. Ground wave propagation is used only for ………
 - Medium and long wave signals
10. Radio waves propagated through the troposphere of the earth are known as ………
 - Space waves
11. The portion of the earth’s atmosphere which extends upto 15 km from the surface of the earth is called …………
 - Troposphere
12. Space wave propagation is particularly suitable for the waves having frequencies above ………
 - 30 MHz
13. The ionised region containing free electrons, positive and negative ions in the earth’s atmosphere is called …………
 - Ionosphere
14. Long distance radio communication is possible through the …………
 - Sky wave propagation
15. The refractive indices of the various layers in the ionosphere vary with respect to ………… and ………… of the incident wave.
16. In the sky wave propagation, for a fixed frequency, the shortest distance between the point of transmission and the point of reception along the surface is known as ………
 - Skip distance
17. The region between the point where there is no reception of ground waves and the point where the sky wave is received first is known as ………
 - Skip zone
18. In the skip zone, there is ………… at all.
 - No reception
19. The audio frequency ranges from …………
 - 20 – 20000 Hz
20. The process of changing amplitude or frequency or phase of the carrier wave (RF wave) in accordance with the intensity of the signal wave (AF wave) is called ………
 - Modulation
21. The process of changing amplitude of the carrier wave in accordance with the intensity of the signal wave is called ………
 - Amplitude modulation
22. The ratio of the amplitude change of the carrier wave after modulation to the amplitude of the carrier wave before modulation is called ………
 - Modulation factor
23. Signal amplitude / carrier amplitude is called as ………
 - Modulation factor
24. The strength and the quality of the transmitted signal can be determined by the …………
 - Modulation factor
25. When the modulation factor is ………., the transmitted signal will not be very strong.
 - Less than one
26. When the modulation factor is greater than one, ………. is produced in the transmitted signal.
 - Distortion
27. For effective modulation, the degree of modulation should never exceed ………
 - 100%
28. A carrier wave may be represented by \(e_c = \ldots \ldots \).
29. The modulating signal may be represented by \(e_s = \ldots \ldots \).
30. In AM, the component having a frequency greater than that of the carrier wave is called as the ………
 - Upper Side Band
31. In AM, the component having a frequency lesser than that of the carrier wave is called as the ………
 - Lower Side Band
32. The magnitude of both the upper and lower side bands is ……… times the carrier amplitude \(E_c \).
 - \(m/2 \)
33. In an AM wave, the ……… is from \((\omega_c - \omega_s)\) to \((\omega_c + \omega_s)\) i.e. twice the signal frequency.
 - Bandwidth

………………… Continued in Page – 2
34. The difference between maximum frequency of USB and the minimum frequency of the LSB is called the channel width.
35. The channel width = X maximum frequency of the modulating signal. 2
36. In an AM wave, the reception is generally noisy.
37. The efficiency of AM wave is low.
38. The messages cannot be transmitted over long distances in AM wave.
39. The process of changing frequency of the carrier wave in accordance with the intensity of the signal wave is called frequency modulation.
40. The frequency of the FM transmitter without signal input is called the rest or centre frequency.
41. The change or shift either above or below the resting frequency is called frequency deviation.
42. Carrier swing = 2 X frequency deviation.
43. FM receiver gives reception. noiseless
44. A much wider channel is required by FM.
45. The process of changing phase of the carrier wave in accordance with the intensity of the signal wave is called phase modulation.
46. The phase modulation generally uses a bandwidth than FM. smaller
47. The centre frequency is extremely stable in modulation. phase
48. A modulator performs the process called modulation.
49. Frequency modulated systems are operated usually at a frequency above 40 MHz.
50. The difference between oscillator frequency and radio frequency is called as frequency. intermediate
51. In a superheterodyne receiver, the output from the mixer will have a frequency of kHz. 455 kHz
52. In television, usually sound signals are modulated and picture signals are amplitude modulated. frequency
53. A television camera converts the light energy into electrical energy.
54. A blanking pulse is a high negative potential applied to the of the electron gun. control grid
55. The horizontal scanning frequency is as the number of lines scanned per second.
56. In a 625 line system, transmitting 25 frames per second, the horizontal scanning frequency is Hz. 15,625 Hz
57. In a 625 line system, transmitting 25 frames per second, time taken to scan one line is μs. 64 μs
58. Optical fibers are used for transmission of light.
59. The system which uses radio waves to detect and to fix the position of targets at a distance is called as RADAR.
60. Radar works on the principle of radio echoes.
61. Air and sea navigation is made entirely safe with installations. radar
62. Radar systems are used for the safe landing of air crafts.
63. An analog signal is a continuously varying voltage or current.
64. The greatest technical problem with an analog communication system is noise.
65. A digital system requires larger bandwidth.
66. The name is the abbreviation of the term Modulator and Demodulator. modem
67. The device that is used to convert digital signals into analog signals capable of being transmitted over telephone lines is called as modem.
68. The electronic system for transmitting graphical information by wire or radio is called as Fax or Facsimile.
69. The types of wire and cable used in data communications are (a) twisted pair (b) multiconductor flat cable and (c)
70. Coherent light can be generated with laser or by
71. Coherent light can be detected by
72. The principle of is used for the transmission of light signals through an optical fiber.
73. The people over world watch international events like Olympic games via
74. The angular velocity of the geostationary satellite around the earth is equal to the angular velocity of the earth
75. Satellite orbiting the earth will be geostationary when it is about km away from the earth.
76. The downlink frequencies are kept different from the uplink frequencies in order to avoid
77. The downlink frequencies are kept different from the uplink frequencies by
78. The frequency of the crystal controlled oscillator is kept constant by which separates RF power amplifier from the oscillator.
79. The superheterodyne receiver will have maximum stability, selectivity and
80. Vidicon camera tube is a camera tube.
81. For scanning a picture, the three synchronising pulses that are used are
82. The propagation of EM waves depend on the properties of the waves and the
83. Radio waves ordinarily travel in
84. The advantages of amplitude modulation are i) easy transmission and reception ii) lesser bandwidth requirements iii)
85. The efficiency of FM transmission is very
86. The two sections of amplitude modulated transmitter are i) AF section and ii)
87. The amplifier isolates the RF power amplifier from the oscillator. This arrangement keeps the frequency of the crystal controlled oscillator as a constant.
88. The phase modulation is essentially a modulation.
89. In FM transmitter, network makes all the frequencies in the modulating signal to have equal power.
90. Simple radio receiver circuit has i) poor sensitivity and ii)
91. For FM receivers, the Intermediate Frequency is
92. Television literally means
93. The transmitter and receiver switch in a radar is called as
94. In a radar, the generates periodic pulses of very short duration.
95. The bit is a contraction of the term
96. The printed documents to be transmitted by fax are converted into electrical signals by the process of
97. In modulation, both the phase and the frequency of the carrier wave varies.
98. The printed documents to be transmitted by fax are converted into electrical signals by the process
99. The purpose of dividing each frame into two fields so as to transmit 50 views of the picture per second is to avoid
100. The RF channel in a radio transmitter produces high frequency